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For a two-dimensional homogeneous electron gas, the canonical density matrix Cðr, r 0;�Þ is
well-known. This object is related to the Feynman propagator Kðr, r 0; tÞ, where t is the time,
by the transform �! it. From the free electron form of Cðr, r 0;�Þ, the Green function follows
in terms of the Bessel function K0. When a bare Coulomb potential �Ze2=r is now ‘switched
on’, one known property is the local density of states at the nucleus. This enables the imaginary
part ImG of the Green function at the nucleus to be determined as an explicit function
of energy E and nuclear charge Ze. Off-diagonal information on ImG will yield the real
part of the Green function by using the Kramers–Krönig relation. The analysis of the
two-dimensional Green function G into partial waves characterized by angular momentum
quantum number ‘ is then considered. The imaginary part of G for ‘¼ 0 is determined in
terms of a hypergeometric function. The real part is again in principle accessible by invoking
the Kramers–Krönig relation. From the relation between G and the Laplace transform of
C with respect to �, information is also obtained on the ‘¼ 0 partial wave component of
the Slater sum Sðr, �Þ ¼ Cðr, r; �Þ and hence the Feynman propagator on the diagonal, in the
limiting case Z ! 0.

Keywords: Inhomogeneous electron liquid; Two-dimensional Coulomb potential;
Density matrices

PACS numbers: 05.30.Fk; 71.10.Ca; 31.15.Ew; 31.15.Bs

1. Introduction

A great deal of attention has been devoted to propagators generated by the bare
Coulomb potential �Ze2=r in three dimensions. Thus, the Feynman propagator
Kðr, r 0; tÞ, where t is the time, has been given by Blinder [1] in the form of an infinite
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series, which, however, remains complicated in that this result contains a variety of
special functions including Whittaker functions, together with Laguerre and Hermite
polynomials.

Here, therefore, we shall consider a related quantity, the canonical density matrix

Cðr, r 0;�Þ, which is related to Kðr, r 0; tÞ by the transformation �! it [1], along with
the Dirac density matrix � ðr, r 0Þ, but in what proves to be the mathematically simpler
case of the same potential �Ze2=r, but now in two dimensions. The canonical density

matrix satisfies the Bloch equation [2]

H rCðr, r
0;�Þ ¼ �

@Cðr, r 0;�Þ

@�
, ð1Þ

where the now two-dimensional (2D) Hamiltonian H r has the explicit form

H r ¼ �
�h2

2m
r2
r �

Ze2

r
ð2Þ

throughout the present study. The boundary condition to be combined with equation (1)
is that Cðr, r 0; 0Þ ¼ �ðr� r 0Þ.

In the limit Z ! 0, the free-particle canonical density matrix takes the well-known

form in two dimensions

C0ðr, r
0;�Þ ¼

1

2p�
exp

�jr� r 0j2

2�

� �
, ð3Þ

going back to the celebrated study of Sondheimer and Wilson [3]. It is known that C
and the Green function G are related via

L � Cðr, r
0;�Þ ¼ Gðr, r 0;�EÞ ð4Þ

and inserting in equation (4) the free-particle result (3) we readily obtain the free-
particle Green function in two dimensions as

G0ðr, r
0;�EÞ ¼

1

p
K0ð

ffiffiffiffiffiffi
2E

p
jr� r 0jÞ, ð5Þ

where K0(z) denotes the modified Bessel function.
It is relevant here to note, concerning the simplicity of the above 2D case, that

when equation (3) is decomposed into ‘partial waves’ characterized by the angular
momentum quantum number ‘, the resulting ‘-component L �C0‘ðr, r

0;�Þ takes the

factorized form

L � C0‘ðr, r
0;�Þ ¼ f‘ðr;E Þ f‘ðr

0;E Þ, ð6Þ
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whereas March and Murray [4] in early work showed that for 3D the corresponding
free-particle limit of C0‘ðr, r

0;�Þ had the nonfactorizable form proportional to

exp �
r2 þ r 02

2�

� �
I‘þð1=2Þ rr

0=�ð Þffiffiffiffiffiffi
rr 0

p ,

where In(x) is the modified Bessel function ð�iÞnJnð�ixÞ. We shall stress in section 2
below that the factorization property exhibited in equation (6) for the free-particle
limit Z ! 0 in equations (1) and (2) continues to hold in the 2D Coulomb problem,
which is the main focus of the present study. Continuing the outline of this article,
section 3 moves from the canonical matrix discussed earlier to the Dirac density
matrix �ðr, r 0Þ. As utilized by March and Murray, provided a constant greater than
the lowest bound state eigenvalue is added, to bring the entire level spectrum in the
energy range 0 < E <1, �ðr, r 0;EÞ and Cðr, r 0;�Þ are related by

Cðr, r 0;�Þ ¼ �

Z 1

0

�ðr, r 0;E Þ expð��E ÞdE: ð7Þ

Some results on the Dirac matrix �ðr, r 0;EÞ form the essence of section 3. Since it is
known that the imaginary part of the Green function is directly related to
@�ðr, r 0;EÞ=@E, some discussion of the 2DGreen function provides the focus of section 4.
The article concludes with a summary, plus some proposals for future directions that
should prove fruitful, in section 5.

2. The partial wave canonical density matrix in the 2D bare Coulomb case

The normalized wave functions  n‘ðrÞ generated by the bare Coulomb potential �Ze2=r
in 2D take the explicit form in plane polar coordinates ðr, �Þ, with En ¼ �k20n say, and
Z¼ 1 for simplicity,

 n‘ðrÞ ¼
k30nðn� j‘jÞ!

pðnþ j‘jÞ!

� �1=2

ð2k0nrÞ
j‘j expð�k0nrÞL

2j‘j
n�j‘jð2k0nrÞ expði‘�Þ: ð8Þ

The bound-state energy levels are given in 2D by

En ¼ �
1

ðnþ ð1=2ÞÞ2
: ð9Þ

The bound state ðbÞ canonical density matrix CðbÞðr, r 0;�Þ written in terms of En and  n‘,
reads

C
ðbÞ
‘ ðr, r 0;�Þ ¼

X
n

k30nðn� j‘jÞ!

pðnþ j‘jÞ!

� �
ð2k0nrÞ

j‘j expð�k0nrÞL
2j‘j
n�j‘jð2k0nrÞ

� ð2k0nr
0Þ
j‘j expð�k0nr

0ÞL2j‘j
n�j‘jð2k0nr

0Þe�=ðnþð1=2ÞÞ2 : ð10Þ
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Turning from this wave function form of C
ðbÞ
‘ to direct Green function results,

prompted by the relation (4), we seek the partial wave component of G for the 2D
bare Coulomb potential. One place, among others, where this is conveniently given,
is in the study of Inomata [5]. His equation (26) corresponds to (in atomic units
m ¼ �h ¼ 1, which we use here)

G‘ðr, r
0;EÞ ¼

2i‘�2�ðpþ ‘þ ð1=2ÞÞffiffiffiffiffiffiffiffiffiffiffi
2Err 0

p �ð2‘þ 1ÞMp, ‘ 2i
ffiffiffiffiffiffi
2E

p
r

� �
W�p, ‘ �2i

ffiffiffiffiffiffi
2E

p
r 0

� �
, ð11Þ

where p ¼ �iZ=
ffiffiffiffiffiffi
2E

p
, while Mp, ‘ and W�p, ‘ denote Whittaker functions.

Since we have the relation

L �C‘ðr, r
0;�Þ ¼ G‘ðr, r

0;�E Þ, ð12Þ

this proves our contention in the free-particle form equation (6) that L �C‘ðr, r
0;�Þ also

factorizes to read

L �C‘ðr, r
0;�Þ ¼ A‘ðr;EÞB‘ðr

0;EÞ, ð13Þ

where, apart from multiplying factors that also involve p, but not r and r 0,

A‘ðr;EÞ ¼
1ffiffi
r

p Mp, ‘ð2i
ffiffiffiffiffiffi
2E

p
rÞ ð14Þ

while

B‘ðr
0;EÞ ¼

1ffiffiffiffi
r 0

p W�p, ‘ð�2i
ffiffiffiffiffiffi
2E

p
r 0Þ: ð15Þ

It is then straightforward from equations (14) and (15) to prove that A‘ ¼ B‘ for ‘¼ 0,
when both reduce to the Kummer function Mð�iZ=k, 0, 2ikrÞ=

ffiffi
r

p
.

3. Introduction of 2D Coulomb potential: diagonal of Dirac density matrix,

local density of states and imaginary part of Green function

In an earlier study on nonlinear scattering, March et al. [6] gave some attention to the
introduction of a bare Coulomb potential �Ze2=r into a 2D, initially homogeneous
electron assembly.

These workers gave a differential equation for the ‘¼ 0 component, say N0ðr,E,ZÞ,
for the local density of states in the presence of the Coulomb potential. Their result for
N0ðr,E,ZÞ could be expressed in terms of the hypergeometric function 1F1 as

@�‘¼0ðr, r
0;E,ZÞ

@E

����
r 0¼r

/ 1F1
iZ

k
þ
1

2
, 1, 2ikr

� �����
����
2

; k ¼
ffiffiffiffiffiffi
2E

p
: ð16Þ
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where �‘¼0 is the s-like component of the Dirac density matrix �ðr, r 0;E,ZÞ.
To relate to the free-electron limit discussed in some detail earlier, one can employ
the identity

1F1 pþ
1

2
, 2pþ 1, 2iz

� �
¼ �ðpþ 1Þ

z

2

� ��p

eizJpðzÞ ð17Þ

in the case p¼ 0. Then equation (16) reduces to the free-electron limit (Z ! 0
corresponding to p¼ 0 in equation (17))

@�‘¼0ðr, r
0;E,ZÞ

@E

����
r 0¼r,Z¼0

/ J0ð
ffiffiffiffiffiffi
2E

p
rÞ2: ð18Þ

Thus we can write for the imaginary part of the 2D Green function for ‘¼ 0 the result

ImG‘¼0ðr, r
0;E,ZÞjr 0¼r / 1F1

iZ

k
þ
1

2
, 1, 2ikr

� �����
����
2

: ð19Þ

This must evidently relate to G‘¼0ðr, r
0;E,ZÞ given in equation (26) of Inomata [5], and

written in equation (11). Explicitly, this result reads (in atomic units)

G‘¼0ðr, r
0;E,ZÞ ¼

�2�ðpþ ð1=2ÞÞ

k
ffiffiffiffiffiffi
rr 0

p Mp, 0ð2ikrÞ W�p, 0ð�2ikr 0Þ: ð20Þ

It remains to take the imaginary part of equation (20), after which, letting r 0 ! r in
ImG‘¼0ðr, r

0;E,Z Þ one must recover the result (19).
Figure 1 shows the ‘¼ 0 partial wave form of the imaginary part of the Green

function for Z¼ 1 and for the range of variables shown in the caption. Figure 2 is
then for the more strongly scattering Coulomb potential with Z¼ 50, the range of
the variables again being given in the caption. Figure 2(a) is the counterpart of
figure 1 for Z¼ 50 now. However, in this strong scattering case, figure 2(b) depicts
the nonlinear oscillatory behavior of ImG‘¼0 for Z¼ 50 and two values of k.

We next note from Gradshteyn and Ryzhik [7] that the above Whittaker function
Mp, ‘ is related to 1F1 by

M�,�ðzÞ ¼ z�þð1=2Þe�z=2
1F1 �� �þ

1

2
, 2�þ 1, z

� �
: ð21Þ

When �¼ 0, � ¼ p, and z ¼ 2ikr, this equation (21) becomes

Mp, 0ð2ikrÞ ¼ ð2ikrÞð1=2Þe�ikr
1F1 �pþ

1

2
, 1, 2ikr

� �
: ð22Þ
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With p ¼ �iZ=k, this equation (16) can be used in equation (20) to remove the

Whittaker function Mp, 0 in favor of the hypergeometric function 1F1 determining

ImG‘¼0ðr, r
0;E,Z Þ

��
r 0¼r

in equation (19). Hence it follows that

G‘¼0ðr, r
0;E,Z Þ / 1F1 �pþ

1

2
, 1, 2ikr

� �
W�p, 0ð�2ikr 0Þ: ð23Þ

We can only take a limit in equation (23) as r 0 ! r by removing the real part

of G‘¼0ðr, r
0;E,ZÞ. Then, ImG‘¼0ðr, r

0;E,ZÞ
��
r 0¼r

must be given by equation (19)

(see also figure 1).

3.1. Form of density change Dqðr,E,Z Þ due to potential �Ze2=r in 2D electron gas

In the scattering theory set out by March et al. [6] a further result, which could be

obtained without analyzing into partial waves, is for the change in density

��ðr,E,Z Þ induced by the bare Coulomb potential in 2D. Their result reads, at r ¼ 0:

��ð0,E,ZÞ ¼
E

p
tanh

Zpffiffiffiffiffiffi
2E

p

� �
: ð24Þ

2
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Figure 1. A plot of the RHS of equation (19) for the ‘¼ 0 partial wave form of the Green function for
Z¼ 1, with k 2 ½0:01, 4� and r 2 ½0, 10�.
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This, to first order in Z, recovers the linear response result Z
ffiffiffiffiffiffiffiffi
E=2

p
. Again, we are

interested in the information that equation (24) contains concerning the imaginary
part of Gð0, 0;E,ZÞ via

1

p
Im�Gð0, 0;E,ZÞ ¼

@��ð0,E,ZÞ

@E
, ð25Þ

where �G stands for G� GZ!0. The result in equation (16) must relate to equation (22)
of Inomata when corrected for typographical errors, one at least being that ðr 0 � r 00Þ1=2

should read ðr 0r00Þ1=2. One must form�Gðr, r 0 ¼ 0;E,ZÞ ¼ G� GZ!0 from equation (22)

0
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0.4

0.6

0.8

1

0.5

1
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0

0.1

0.2

0
0.2

0.4

0.6

0.8

(a)

0.5 1 1.5

0.05

0.1

0.15

(b)

Figure 2. A plot of the RHS of equation (19) for the ‘¼ 0 partial wave form of the Green function
for Z¼ 50. In (a) k 2 ½0:1, 2� and r 2 ½0, 1�. In (b) the solid curve corresponds to k¼ 0.4 and the dashed
line to k¼ 4.
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and then take the imaginary part as in equation (25). Only then can one pass to the
diagonal limit r ¼ r 0 ¼ 0 required in equation (25).

4. Partial wave lV 0 component of Green function Gðr, r 0;E,ZÞ and
limiting form as Z tends to zero

Work done by Inomata [5] has yielded a form for the Green function generated by
the Coulomb potential �Ze2=r in 2D in terms of Whittaker functions M and W.
The result of his equation (26) is written in equation (20). As p ¼ �iZ=

ffiffiffiffiffiffi
2E

p
! 0,

we have the relations, see 9.235(1) and 9.235(2) of [7],

M0,0ðzÞ ¼
ffiffiffi
z

p
I0

z

2

� �
, ð26Þ

W0,0ðzÞ ¼

ffiffiffi
z

p

r
K0

z

2

� �
: ð27Þ

Hence, the free-electron limit Z ! 0 of equation (20) yields

G‘¼0ðr, r
0;E ÞZ¼0 ¼ 4 I0ði

ffiffiffiffiffiffi
2E

p
rÞK0ð�i

ffiffiffiffiffiffi
2E

p
r 0Þ: ð28Þ

Thus the free-particle limit of the Green function G‘¼0 is known explicitly in terms of
the modified Bessel functions I0 and K0.

Also, from earlier work in the body of this article, the imaginary part of
G‘¼0ðr, r

0;E,ZÞ is determined on the diagonal r 0 ¼ r via the hypergeometric function
as

��
1F1 iZ=kþ ð1=2Þ, 1, 2ikrð Þ

��2.

4.1. Separation of free particle Green function into real and imaginary parts

Using relations between Bessel functions and modified Bessel functions, we can write
from equation (5):

G0ðr, r
0;EÞ ¼ �

1

2
Y0ð

ffiffiffiffiffiffi
2E

p
jr� r 0jÞ þ

i

2
J0ð

ffiffiffiffiffiffi
2E

p
jr� r 0jÞ: ð29Þ

For Y0(x) there is the known integral representation [8]

Y0ðxÞ ¼ �
2

p

Z 1

0

cosðx cosh tÞdt ðx > 0Þ, ð30Þ

while for J0(x) the corresponding result is

J0ðxÞ ¼
2

p

Z 1

0

sinðx cosh tÞdt ðx > 0Þ: ð31Þ
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Thus, from equations (29) to (31) one readily obtains

G0ðr, r
0;E Þ ¼

1

p

Z 1

0

expði
ffiffiffiffiffiffi
2E

p
jr� r 0j cosh tÞdt, ð32Þ

and therefore

G0ðr, r
0;�E Þ ¼

1

p

Z 1

0

expð�
ffiffiffiffiffiffi
2E

p
jr� r 0j cosh tÞdt, ð33Þ

S�=0 (r,b)

S�=0 (r,b)
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Figure 3. Graphic display of the Slater sum for the ‘¼ 0 partial wave: (a) as a function of r for �¼ 0.2
and 1; (b) in a 3D plot for r 2 ½0, 5� and � 2 ½0:5, 2�.
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which integrates to the result given in (5) by 8.432(1) of [7].
It is of interest here, because of the relation (4) between the canonical density matrix

Cðr, r 0;�Þ and Gðr, r 0;�E Þ, to record that after analyzing equation (3) into partial

waves, the diagonal S‘¼0ðr,�Þ, the so-called Slater sum Cðr, r;�Þ, can be calculated as

S‘¼0ðr,�Þ ¼ e�r2=� ðI0ðr
2=�ÞÞ

2p�
: ð34Þ

This is related to the Feynman propagator for ‘¼ 0 by the transform �! it. Figure 3
displays equation (34) for the different variable ranges displayed in the caption. This is
the 2D counterpart for ‘¼ 0 of the 3D result of March and Murray [4] displayed below

equation (6).

5. Summary and possible future directions

The main results of this study for the bare Coulomb potential �Ze2=r in two
dimensions are:

. equation (19) for the imaginary part Im G‘¼0ðr, r
0;E,ZÞjr 0¼r for the ‘s-like’ partial

wave with ‘¼ 0 in equation (19); and
. for the imaginary part Im �Gð0, 0;E,ZÞ due to the change �G in the Green function

on switching on the Coulomb potential �Ze2=r to an initially homogeneous electron
gas in 2D.

Additionally, as by-products of the present study, the free-particle Green function
G0ðr, r

0;EÞ has been separated into its real and imaginary parts in equation (26),

these parts being related by the Kramers–Krönig relation [9]. For the ‘¼ 0 component
of the Slater sum, which in turn is the diagonal element of the canonical density matrix,

equation (34) gives the closed analytic form in terms of the free-particle form times
I0ðr

2=�Þ, which generalizes the result of March and Murray [4] following equation (6)

for ‘¼ 0 to apply to two dimensions.
For future directions, it would be valuable if the ‘¼ 0 partial wave of the Green

function of equation (20) could be separated into its real and imaginary parts. That

would then effect the generalization of the free-electron limit equation (28) away
from Z¼ 0.
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